
GCPC 2015
Presentation of solutions

GCPC 2015 solutions



Statistics

GCPC 2015 solutions



A - Greece – Statistics

Statistics: 21 submissions, 2 accepted

Problem Author: Gregor Behnke - UUlm GCPC 2015 solutions



A - Greece

Problem

0 Athens

1 stay 2

2

3

4

stay 2

5stay 2

2

3

3

10

6

2

21

2

5

taxi 5 Start in Athens (0),
visit all sites and
return to Athens
within a given time
Taxi ticket as a
one-time short cut

⇒ Essentially TSP, but
you only have to
visit P nodes, all
other are optional

Problem Author: Gregor Behnke - UUlm GCPC 2015 solutions



A - Greece

Solution without taxi ticket
Insight 1: You can always take the shortest path between any
two sites p(a, b)
Insight 2: TSP must only be calculated on P nodes connected
by edges with w(a, b) = |p(a, b)|

Implementation

Compute shortest paths by P-times Dijkstra: O(P · N logN)

Run 2P DP solution for TSP — P! will be to slow
Add extra dimension to the DP to account for the taxi ticket
Compare the two values with G −

∑
ti

Problem Author: Gregor Behnke - UUlm GCPC 2015 solutions



A - Greece

Solution without taxi ticket
Insight 1: You can always take the shortest path between any
two sites p(a, b)
Insight 2: TSP must only be calculated on P nodes connected
by edges with w(a, b) = |p(a, b)|

Implementation

Compute shortest paths by P-times Dijkstra: O(P · N logN)

Run 2P DP solution for TSP — P! will be to slow
Add extra dimension to the DP to account for the taxi ticket
Compare the two values with G −

∑
ti

Problem Author: Gregor Behnke - UUlm GCPC 2015 solutions



B - Bounty Hunter II – Statistics

Statistics: 28 submissions, 1 accepted

Problem Author: Martin Tillmann - KIT GCPC 2015 solutions



B - Bounty Hunter II

4 3 1

0 2

⇒ 4 3 1

0 2

Problem
Given a DAG with N nodes find the minimum number of
vertex-disjoint paths to cover each vertex.

Problem Author: Martin Tillmann - KIT GCPC 2015 solutions



B - Bounty Hunter II

4 3 1

0 2

⇒ 2O 3O 4O

0I 1I 2I 3I

Solution
Construct bipartite graph from DAG. Set O contains all vertices
with their outgoing edges, set I contains all vertices with their
incoming edges.

Problem Author: Martin Tillmann - KIT GCPC 2015 solutions



B - Bounty Hunter II

2O 3O 4O

0I 1I 2I 3I

Solution
Compute maximal matching M on bipartite graph with
augmenting paths or similar algorithm.

Idea: Start with N zero length paths in every node.
Edge (aO , bI ) ∈ M =̂ Path arriving at a continues to b

Number of necessary paths is then N − |M|.

Problem Author: Martin Tillmann - KIT GCPC 2015 solutions



B - Bounty Hunter II

2O 3O 4O

0I 1I 2I 3I

Solution
Compute maximal matching M on bipartite graph with
augmenting paths or similar algorithm.
Idea: Start with N zero length paths in every node.

Edge (aO , bI ) ∈ M =̂ Path arriving at a continues to b

Number of necessary paths is then N − |M|.

Problem Author: Martin Tillmann - KIT GCPC 2015 solutions



B - Bounty Hunter II

2O 3O 4O

0I 1I 2I 3I

Solution
Compute maximal matching M on bipartite graph with
augmenting paths or similar algorithm.
Idea: Start with N zero length paths in every node.
Edge (aO , bI ) ∈ M =̂ Path arriving at a continues to b

Number of necessary paths is then N − |M|.

Problem Author: Martin Tillmann - KIT GCPC 2015 solutions



B - Bounty Hunter II

2O 3O 4O

0I 1I 2I 3I

Solution
Compute maximal matching M on bipartite graph with
augmenting paths or similar algorithm.
Idea: Start with N zero length paths in every node.
Edge (aO , bI ) ∈ M =̂ Path arriving at a continues to b

Number of necessary paths is then N − |M|.

Problem Author: Martin Tillmann - KIT GCPC 2015 solutions



C - Cake – Statistics

Statistics: 46 submissions, 5 accepted

Problem Author: Stefan Toman - TUM GCPC 2015 solutions



C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed
weight of the cake and an algorithm to reduce weight.

Weight reduction algorithm
Choose a real number s ≥ 2
For each vertex

for both incident edges mark where 1/s of the edge’s length is
cut directly between the two markings and remove the part
with the current vertex

Problem
Compute the maximal s such that the area of the remaining
polygon has proportion less or equal than a.

Problem Author: Stefan Toman - TUM GCPC 2015 solutions



C - Cake

Weight reduction algorithm
s := 3
for each vertex

for both incident edges mark where 1/s of the edge’s length is
cut directly between the two markings and remove the part
with the current vertex

Problem Author: Stefan Toman - TUM GCPC 2015 solutions



C - Cake

Weight reduction algorithm
s := 3
for each vertex

for both incident edges mark where 1/s of the edge’s length is
cut directly between the two markings and remove the part
with the current vertex

Problem Author: Stefan Toman - TUM GCPC 2015 solutions



C - Cake

Weight reduction algorithm
s := 3
for each vertex

for both incident edges mark where 1/s of the edge’s length is
cut directly between the two markings and remove the part
with the current vertex

Problem Author: Stefan Toman - TUM GCPC 2015 solutions



C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed
weight of the cake and an algorithm to reduce weight.

Problem
Compute the maximal s such that the area of the remaining
polygon has proportion less or equal than a.

(Possible) Solution

Fix parameter s

Generate reduced shape
Calculate area of complete / reduced shape and their ratio

The ratio depends on s in a strictly increasing manner.
⇒ Binary search is possible.
WARING: Precision is a huge issue!

Problem Author: Stefan Toman - TUM GCPC 2015 solutions



C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed
weight of the cake and an algorithm to reduce weight.

Problem
Compute the maximal s such that the area of the remaining
polygon has proportion less or equal than a.

(Possible) Solution

Fix parameter s
Generate reduced shape
Calculate area of complete / reduced shape and their ratio

The ratio depends on s in a strictly increasing manner.
⇒ Binary search is possible.
WARING: Precision is a huge issue!

Problem Author: Stefan Toman - TUM GCPC 2015 solutions



C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed
weight of the cake and an algorithm to reduce weight.

Problem
Compute the maximal s such that the area of the remaining
polygon has proportion less or equal than a.

(Possible) Solution

Fix parameter s
Generate reduced shape
Calculate area of complete / reduced shape and their ratio

The ratio depends on s in a strictly increasing manner.
⇒ Binary search is possible.

WARING: Precision is a huge issue!

Problem Author: Stefan Toman - TUM GCPC 2015 solutions



C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed
weight of the cake and an algorithm to reduce weight.

Problem
Compute the maximal s such that the area of the remaining
polygon has proportion less or equal than a.

(Possible) Solution

Fix parameter s
Generate reduced shape
Calculate area of complete / reduced shape and their ratio

The ratio depends on s in a strictly increasing manner.
⇒ Binary search is possible.
WARING: Precision is a huge issue!

Problem Author: Stefan Toman - TUM GCPC 2015 solutions



C - Cake

Insight

The removed area grows proportional with 1
s2
.

Problem Author: Stefan Toman - TUM GCPC 2015 solutions



C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed
weight of the cake and an algorithm to reduce weight.

Problem
Compute the maximal s such that the area of the remaining
polygon has proportion less or equal than a.

Better Solution

The removed area grows proportional with 1
s2
.

Compute the reduced area for some value of s and scale.

Use s = 2 (we call the reduced area As=2).
Use only 64 bit integers to avoid precision issues.

(Afull − As) = (Afull − As=2) · 22/s2 and
smax = 2 ·

√
(Afull − As=2)/(Afull · (1− a))

Problem Author: Stefan Toman - TUM GCPC 2015 solutions



C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed
weight of the cake and an algorithm to reduce weight.

Problem
Compute the maximal s such that the area of the remaining
polygon has proportion less or equal than a.

Better Solution

The removed area grows proportional with 1
s2
.

Compute the reduced area for some value of s and scale.
Use s = 2 (we call the reduced area As=2).
Use only 64 bit integers to avoid precision issues.

(Afull − As) = (Afull − As=2) · 22/s2 and
smax = 2 ·

√
(Afull − As=2)/(Afull · (1− a))

Problem Author: Stefan Toman - TUM GCPC 2015 solutions



C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed
weight of the cake and an algorithm to reduce weight.

Problem
Compute the maximal s such that the area of the remaining
polygon has proportion less or equal than a.

Better Solution

The removed area grows proportional with 1
s2
.

Compute the reduced area for some value of s and scale.
Use s = 2 (we call the reduced area As=2).
Use only 64 bit integers to avoid precision issues.

(Afull − As) = (Afull − As=2) · 22/s2 and
smax = 2 ·

√
(Afull − As=2)/(Afull · (1− a))

Problem Author: Stefan Toman - TUM GCPC 2015 solutions



D - Carpets – Statistics

Statistics: 11 submissions, 1 accepted

Problem Author: Thorsten Wißmann - FAU GCPC 2015 solutions



D - Carpets

Problem
Decide whether a rectangular room can be covered by a given set
of smaller rectangular carpets (count ≤ 7).

Solution: Backtracking + obvious optimizations
Try filling a 2D-array of booleans representing the room:

1 Find the topmost row with free cells and pick the leftmost cell
2 If no cell free any more, return “yes”
3 For any carpet in stock & rotation and fitting at the given cell:

1 Put the carpet
2 If recursive call to (1) successful, return “yes”
3 Put the carpet back to stock

4 If all available carpets tried, return “no”

Problem Author: Thorsten Wißmann - FAU GCPC 2015 solutions



D - Carpets

Problem
Decide whether a rectangular room can be covered by a given set
of smaller rectangular carpets (count ≤ 7).

Solution: Backtracking + obvious optimizations
Try filling a 2D-array of booleans representing the room:

1 Find the topmost row with free cells and pick the leftmost cell
2 If no cell free any more, return “yes”
3 For any carpet in stock & rotation and fitting at the given cell:

1 Put the carpet
2 If recursive call to (1) successful, return “yes”
3 Put the carpet back to stock

4 If all available carpets tried, return “no”

Problem Author: Thorsten Wißmann - FAU GCPC 2015 solutions



E - Change of Scenery – Statistics

Statistics: 79 submissions, 6 accepted

Problem Author: Philipp Hoffmann - TUM GCPC 2015 solutions



E - Change of Scenery

Problem
Given a shortest path between node S and T in a graph.
Is there is a different path of the same length between S and T?

Solution
Dijkstra with minor adjustments.
Keep track of the set of nodes N that can be reached via
multiple shortest paths.
Add a node to N if

you reach it a second time without updating OR
you update it from a node in N.

Don’t forget to remove it from N if you update it from a node
not in N!
Finally, report whether the target is in N.

Problem Author: Philipp Hoffmann - TUM GCPC 2015 solutions



E - Change of Scenery

Problem
Given a shortest path between node S and T in a graph.
Is there is a different path of the same length between S and T?

Solution
Dijkstra with minor adjustments.
Keep track of the set of nodes N that can be reached via
multiple shortest paths.
Add a node to N if

you reach it a second time without updating OR
you update it from a node in N.

Don’t forget to remove it from N if you update it from a node
not in N!
Finally, report whether the target is in N.

Problem Author: Philipp Hoffmann - TUM GCPC 2015 solutions



F - Divisions – Statistics

Statistics: 49 submissions, 1 accepted

Problem Author: Alexander Raß - FAU GCPC 2015 solutions



F - Divisions

Problem

Given: a positive integer N, (1 ≤ N ≤ 1018)
Output the number of positive integral divisors DN of N.

(Naive) Solution: Standard factorization in O(
√
N)

Let N =
∏k

i=1 p
ni
i , e.g. 288 = 25 ∗ 32

where pi are the prime factors of N.
=⇒ DN =

∏k
i=1(ni + 1), e.g. D288 = (5+ 1) · (2+ 1) = 18.

Insight

Do factorization only for prime factors up to 3
√
N.

N = C ·
∏m

i=1 p
ni
i , where pi ≤ 3

√
N are prime factors of N.

C contains no divisor less than 3
√
N.

Problem Author: Alexander Raß - FAU GCPC 2015 solutions



F - Divisions

Problem

Given: a positive integer N, (1 ≤ N ≤ 1018)
Output the number of positive integral divisors DN of N.

(Naive) Solution: Standard factorization in O(
√
N)

Let N =
∏k

i=1 p
ni
i , e.g. 288 = 25 ∗ 32

where pi are the prime factors of N.
=⇒ DN =

∏k
i=1(ni + 1), e.g. D288 = (5+ 1) · (2+ 1) = 18.

Insight

Do factorization only for prime factors up to 3
√
N.

N = C ·
∏m

i=1 p
ni
i , where pi ≤ 3

√
N are prime factors of N.

C contains no divisor less than 3
√
N.

Problem Author: Alexander Raß - FAU GCPC 2015 solutions



F - Divisions

Problem

Given: a positive integer N, (1 ≤ N ≤ 1018)
Output the number of positive integral divisors DN of N.

(Naive) Solution: Standard factorization in O(
√
N)

Let N =
∏k

i=1 p
ni
i , e.g. 288 = 25 ∗ 32

where pi are the prime factors of N.
=⇒ DN =

∏k
i=1(ni + 1), e.g. D288 = (5+ 1) · (2+ 1) = 18.

Insight

Do factorization only for prime factors up to 3
√
N.

N = C ·
∏m

i=1 p
ni
i , where pi ≤ 3

√
N are prime factors of N.

C contains no divisor less than 3
√
N.

Problem Author: Alexander Raß - FAU GCPC 2015 solutions



F - Divisions

Solution

Let N =
∏k

i=1 p
ni
i , then result is

∏k
i=1(ni + 1).

N = C ·
∏m

i=1 p
ni
i , where C contains no prime factor ≤ 3

√
N.

Insight: C is either 1, prime, or the product of two primes.
This results in the following few cases:

C = 1: output
∏m

i=1(ni + 1), check in O(1).
C is prime: output 2 ·

∏m
i=1(ni + 1), check in O(logN).

C is a product of two equal primes / square:
output 3 ·

∏m
i=1(ni + 1), check in O(logN), e.g. use sqrt.

C is a product of two different primes:
output 2 · 2 ·

∏m
i=1(ni + 1), no further check necessary.

Problem Author: Alexander Raß - FAU GCPC 2015 solutions



F - Divisions

Solution

Let N =
∏k

i=1 p
ni
i , then result is

∏k
i=1(ni + 1).

N = C ·
∏m

i=1 p
ni
i , where C contains no prime factor ≤ 3

√
N.

Insight: C is either 1, prime, or the product of two primes.

This results in the following few cases:
C = 1: output

∏m
i=1(ni + 1), check in O(1).

C is prime: output 2 ·
∏m

i=1(ni + 1), check in O(logN).
C is a product of two equal primes / square:
output 3 ·

∏m
i=1(ni + 1), check in O(logN), e.g. use sqrt.

C is a product of two different primes:
output 2 · 2 ·

∏m
i=1(ni + 1), no further check necessary.

Problem Author: Alexander Raß - FAU GCPC 2015 solutions



F - Divisions

Solution

Let N =
∏k

i=1 p
ni
i , then result is

∏k
i=1(ni + 1).

N = C ·
∏m

i=1 p
ni
i , where C contains no prime factor ≤ 3

√
N.

Insight: C is either 1, prime, or the product of two primes.
This results in the following few cases:

C = 1: output
∏m

i=1(ni + 1), check in O(1).

C is prime: output 2 ·
∏m

i=1(ni + 1), check in O(logN).
C is a product of two equal primes / square:
output 3 ·

∏m
i=1(ni + 1), check in O(logN), e.g. use sqrt.

C is a product of two different primes:
output 2 · 2 ·

∏m
i=1(ni + 1), no further check necessary.

Problem Author: Alexander Raß - FAU GCPC 2015 solutions



F - Divisions

Solution

Let N =
∏k

i=1 p
ni
i , then result is

∏k
i=1(ni + 1).

N = C ·
∏m

i=1 p
ni
i , where C contains no prime factor ≤ 3

√
N.

Insight: C is either 1, prime, or the product of two primes.
This results in the following few cases:

C = 1: output
∏m

i=1(ni + 1), check in O(1).
C is prime: output 2 ·

∏m
i=1(ni + 1), check in O(logN).

C is a product of two equal primes / square:
output 3 ·

∏m
i=1(ni + 1), check in O(logN), e.g. use sqrt.

C is a product of two different primes:
output 2 · 2 ·

∏m
i=1(ni + 1), no further check necessary.

Problem Author: Alexander Raß - FAU GCPC 2015 solutions



F - Divisions

Solution

Let N =
∏k

i=1 p
ni
i , then result is

∏k
i=1(ni + 1).

N = C ·
∏m

i=1 p
ni
i , where C contains no prime factor ≤ 3

√
N.

Insight: C is either 1, prime, or the product of two primes.
This results in the following few cases:

C = 1: output
∏m

i=1(ni + 1), check in O(1).
C is prime: output 2 ·

∏m
i=1(ni + 1), check in O(logN).

C is a product of two equal primes / square:
output 3 ·

∏m
i=1(ni + 1), check in O(logN), e.g. use sqrt.

C is a product of two different primes:
output 2 · 2 ·

∏m
i=1(ni + 1), no further check necessary.

Problem Author: Alexander Raß - FAU GCPC 2015 solutions



F - Divisions

Solution

Let N =
∏k

i=1 p
ni
i , then result is

∏k
i=1(ni + 1).

N = C ·
∏m

i=1 p
ni
i , where C contains no prime factor ≤ 3

√
N.

Insight: C is either 1, prime, or the product of two primes.
This results in the following few cases:

C = 1: output
∏m

i=1(ni + 1), check in O(1).
C is prime: output 2 ·

∏m
i=1(ni + 1), check in O(logN).

C is a product of two equal primes / square:
output 3 ·

∏m
i=1(ni + 1), check in O(logN), e.g. use sqrt.

C is a product of two different primes:
output 2 · 2 ·

∏m
i=1(ni + 1), no further check necessary.

Problem Author: Alexander Raß - FAU GCPC 2015 solutions



F - Divisions

Solution

Let N =
∏k

i=1 p
ni
i , then result is

∏k
i=1(ni + 1).

Alternative solution:
Use pollard ρ algorithm for factorization.
Beware of overflows.

Problem Author: Alexander Raß - FAU GCPC 2015 solutions



G - Extreme Sort – Statistics

Statistics: 74 submissions, 62 accepted

Problem Author: Hans Spath - FAU GCPC 2015 solutions



G - Extreme Sort

Problem
Check whether input sequence is correctly sorted in ascending order.

Solution 1
Check whether xi ≤ xi+1 for all i .
⇒ O(n)

Solution 2
Don’t think, just calculate the extreme property, i.e. calculate
all xi ,j and print “no” if any of those is less than 0, otherwise
print “yes”.
⇒ O(n2) - fast enough.

Problem Author: Hans Spath - FAU GCPC 2015 solutions



G - Extreme Sort

Problem
Check whether input sequence is correctly sorted in ascending order.

Solution 1
Check whether xi ≤ xi+1 for all i .
⇒ O(n)

Solution 2
Don’t think, just calculate the extreme property, i.e. calculate
all xi ,j and print “no” if any of those is less than 0, otherwise
print “yes”.
⇒ O(n2) - fast enough.

Problem Author: Hans Spath - FAU GCPC 2015 solutions



G - Extreme Sort

Problem
Check whether input sequence is correctly sorted in ascending order.

Solution 1
Check whether xi ≤ xi+1 for all i .
⇒ O(n)

Solution 2
Don’t think, just calculate the extreme property, i.e. calculate
all xi ,j and print “no” if any of those is less than 0, otherwise
print “yes”.
⇒ O(n2) - fast enough.

Problem Author: Hans Spath - FAU GCPC 2015 solutions



G - Extreme Sort

Solution 3
Copy the input sequence, sort it, compare to original.
Python:
print("yes" if data == sorted(data) else "no")

⇒ O(n log n)

Solution 4
Know your standard library.
C++:
std::cout <<
(std::prev_permutation(begin(data), end(data))
? "no" : "yes") << std::endl;

⇒ O(n)

Problem Author: Hans Spath - FAU GCPC 2015 solutions



H - Legacy Code – Statistics

Statistics: 138 submissions, 34 accepted

Problem Author: Egor Dranischnikow GCPC 2015 solutions



Legacy Code

Problem
For every method in a program all callers are given.
Find the number of unused methods no matter which program is
run.

C::a

A::a A::b
used by

B::a

used by

A::PROGRAM
used by

C::PROGRAM
used by

B::b
used by

used by

Problem Author: Egor Dranischnikow GCPC 2015 solutions



Legacy Code

Solution
Transpose directions in the “used by”-graph to a “using”-graph.
Explore the resulting graph with help of your favorite algorithm
(bfs, dfs) choosing XXX::PROGRAM as starting nodes.
Count unvisited nodes.

C::a

A::a A::b
using

B::a

using

A::PROGRAM
using

C::PROGRAM
using

B::b
using

using

START

Problem Author: Egor Dranischnikow GCPC 2015 solutions



I - Milling Machines – Statistics

Statistics: 100 submissions, 57 accepted

Problem Author: Tobias Werth - FAU GCPC 2015 solutions



I - Milling Machines

Problem
Given a large number of work pieces and a large number of milling
steps.

Solution

Naive solution is way too slow (104 · 104 · 1002 = 1012).
Insight: Milling steps may be combined using a maximum
operation.
⇒ Combine milling steps and apply combined step on every
workpiece.
Reduces complexity to 104 · 1002 = 108.

Problem Author: Tobias Werth - FAU GCPC 2015 solutions



I - Milling Machines

Problem
Given a large number of work pieces and a large number of milling
steps.

Solution

Naive solution is way too slow (104 · 104 · 1002 = 1012).
Insight: Milling steps may be combined using a maximum
operation.
⇒ Combine milling steps and apply combined step on every
workpiece.
Reduces complexity to 104 · 1002 = 108.

Problem Author: Tobias Werth - FAU GCPC 2015 solutions



J - Souvenirs – Statistics

Statistics: 10 submissions, 2 accepted

Problem Author: Daniel brinkers - FAU GCPC 2015 solutions



J - Souvenirs

Problem
Two type of coins. Buy as many souvenirs as possible. Merchants
have different prices, different methods of rounding and different
values to round towards.

Solution
function buy(gold, silver, m)

if(dp[gold][silver][m] != UNDEF)
return dp[gold][silver][m]

best = buy(gold, silver, m+1) //don’t buy
if(silver >= price[m]) //buy with silver

best = max(best, 1+buy(gold, silver-price[m], m+1))
(else) if(gold >= 1) //buy with gold

ret = roundCorrectly(goldInSilver - price[m])
best = max(best, 1+buy(gold-1, silver + ret, m+1))

return best = dp[gold][silver][m]

Problem Author: Daniel brinkers - FAU GCPC 2015 solutions



J - Souvenirs

Problem
Two type of coins. Buy as many souvenirs as possible. Merchants
have different prices, different methods of rounding and different
values to round towards.

Solution
function buy(gold, silver, m)

if(dp[gold][silver][m] != UNDEF)
return dp[gold][silver][m]

best = buy(gold, silver, m+1) //don’t buy
if(silver >= price[m]) //buy with silver

best = max(best, 1+buy(gold, silver-price[m], m+1))
(else) if(gold >= 1) //buy with gold

ret = roundCorrectly(goldInSilver - price[m])
best = max(best, 1+buy(gold-1, silver + ret, m+1))

return best

= dp[gold][silver][m]

Problem Author: Daniel brinkers - FAU GCPC 2015 solutions



J - Souvenirs

Problem
Two type of coins. Buy as many souvenirs as possible. Merchants
have different prices, different methods of rounding and different
values to round towards.

Solution
function buy(gold, silver, m)

if(dp[gold][silver][m] != UNDEF)
return dp[gold][silver][m]

best = buy(gold, silver, m+1) //don’t buy

if(silver >= price[m]) //buy with silver
best = max(best, 1+buy(gold, silver-price[m], m+1))

(else) if(gold >= 1) //buy with gold
ret = roundCorrectly(goldInSilver - price[m])
best = max(best, 1+buy(gold-1, silver + ret, m+1))

return best

= dp[gold][silver][m]

Problem Author: Daniel brinkers - FAU GCPC 2015 solutions



J - Souvenirs

Problem
Two type of coins. Buy as many souvenirs as possible. Merchants
have different prices, different methods of rounding and different
values to round towards.

Solution
function buy(gold, silver, m)

if(dp[gold][silver][m] != UNDEF)
return dp[gold][silver][m]

best = buy(gold, silver, m+1) //don’t buy
if(silver >= price[m]) //buy with silver

best = max(best, 1+buy(gold, silver-price[m], m+1))

(else) if(gold >= 1) //buy with gold
ret = roundCorrectly(goldInSilver - price[m])
best = max(best, 1+buy(gold-1, silver + ret, m+1))

return best

= dp[gold][silver][m]

Problem Author: Daniel brinkers - FAU GCPC 2015 solutions



J - Souvenirs

Problem
Two type of coins. Buy as many souvenirs as possible. Merchants
have different prices, different methods of rounding and different
values to round towards.

Solution
function buy(gold, silver, m)

if(dp[gold][silver][m] != UNDEF)
return dp[gold][silver][m]

best = buy(gold, silver, m+1) //don’t buy
if(silver >= price[m]) //buy with silver

best = max(best, 1+buy(gold, silver-price[m], m+1))
(else) if(gold >= 1) //buy with gold

ret = roundCorrectly(goldInSilver - price[m])
best = max(best, 1+buy(gold-1, silver + ret, m+1))

return best

= dp[gold][silver][m]

Problem Author: Daniel brinkers - FAU GCPC 2015 solutions



J - Souvenirs

Problem
Two type of coins. Buy as many souvenirs as possible. Merchants
have different prices, different methods of rounding and different
values to round towards.

Solution
function buy(gold, silver, m)
if(dp[gold][silver][m] != UNDEF)

return dp[gold][silver][m]
best = buy(gold, silver, m+1) //don’t buy
if(silver >= price[m]) //buy with silver

best = max(best, 1+buy(gold, silver-price[m], m+1))
(else) if(gold >= 1) //buy with gold

ret = roundCorrectly(goldInSilver - price[m])
best = max(best, 1+buy(gold-1, silver + ret, m+1))

return best = dp[gold][silver][m]

Problem Author: Daniel brinkers - FAU GCPC 2015 solutions



K - Upside Down Primes – Statistics

Statistics: 260 submissions, 50 accepted

Problem Author: Tobias Werth - FAU GCPC 2015 solutions



K - Upside down primes

Problem
Given an integer N, check if N is prime and still a prime after N is
rotated by 180 degrees.

Solution
no if N contains 3, 4 or 7
no if N is composite (use standard primality test)
no if rotated N is composite (use standard primality test)
otherwise: yes

Common mistakes
1 is not prime, 2 is prime (so are 3 and 5)
replace 6 to 9 and vice versa in parallel!
square root might be a prime factor
use 64 bit ints all the way

Problem Author: Tobias Werth - FAU GCPC 2015 solutions



K - Upside down primes

Problem
Given an integer N, check if N is prime and still a prime after N is
rotated by 180 degrees.

Solution
no if N contains 3, 4 or 7
no if N is composite (use standard primality test)
no if rotated N is composite (use standard primality test)
otherwise: yes

Common mistakes
1 is not prime, 2 is prime (so are 3 and 5)
replace 6 to 9 and vice versa in parallel!
square root might be a prime factor
use 64 bit ints all the way

Problem Author: Tobias Werth - FAU GCPC 2015 solutions



K - Upside down primes

Problem
Given an integer N, check if N is prime and still a prime after N is
rotated by 180 degrees.

Solution
no if N contains 3, 4 or 7
no if N is composite (use standard primality test)
no if rotated N is composite (use standard primality test)
otherwise: yes

Common mistakes
1 is not prime, 2 is prime (so are 3 and 5)
replace 6 to 9 and vice versa in parallel!
square root might be a prime factor
use 64 bit ints all the way

Problem Author: Tobias Werth - FAU GCPC 2015 solutions


